Exercise 2.4.5

Use linear stability analysis to classify the fixed points of the following systems. If linear stability analysis fails because $f'(x^*) = 0$, use a graphical argument to decide the stability.

$$\dot{x} = 1 - e^{-x^2}$$

Solution

The fixed points occur where $\dot{x} = 0$.

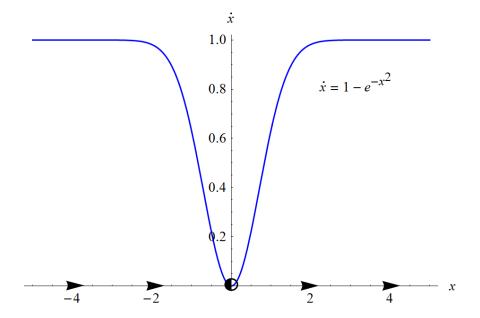
$$1 - e^{-x^{*2}} = 0$$

$$-x^{*2} = 0$$

$$x^* = 0$$

Use linear stability analysis to classify this point.

$$f(x) = 1 - e^{-x^2}$$


Differentiate f(x).

$$f'(x) = -e^{-x^2} \cdot \frac{d}{dx}(-x^2)$$
$$= 2xe^{-x^2}$$

As a result,

f'(0) = 0 \Rightarrow No conclusion can be made about the stability of $x^* = 0$.

The graph of \dot{x} versus x below shows that $x^* = 0$ is in fact a half-stable point.

